×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2312.03452v2 Announce Type: replace-cross
Abstract: The Gorini-Kossakowski-Sudarshan-Lindblad master equation (ME) governs the density matrix of open quantum systems (OQSs). When an OQS is subjected to weak continuous measurement, its state evolves as a stochastic quantum trajectory, whose statistical average solves the ME. The ensemble of such trajectories is termed an unraveling of the ME. We propose a method to operationally distinguish unravelings produced by the same ME in different measurement scenarios, using nonlinear averages of observables over trajectories. We apply the method to the paradigmatic quantum nonlinear system of resonance fluorescence in a two-level atom. We compare the Poisson-type unraveling, induced by direct detection of photons scattered from the two-level emitter, and the Wiener-type unraveling, induced by phase-sensitive detection of the emitted field. We show that a quantum-trajectory-averaged variance is able to distinguish these measurement scenarios. We evaluate the performance of the method, which can be readily extended to more complex OQSs, under a range of realistic experimental conditions.

Click here to read this post out
ID: 843904; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 9, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: