×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.04727v1 Announce Type: new
Abstract: Unjudged documents or holes in information retrieval benchmarks are considered non-relevant in evaluation, yielding no gains in measuring effectiveness. However, these missing judgments may inadvertently introduce biases into the evaluation as their prevalence for a retrieval model is heavily contingent on the pooling process. Thus, filling holes becomes crucial in ensuring reliable and accurate evaluation. Collecting human judgment for all documents is cumbersome and impractical. In this paper, we aim at leveraging large language models (LLMs) to automatically label unjudged documents. Our goal is to instruct an LLM using detailed instructions to assign fine-grained relevance judgments to holes. To this end, we systematically simulate scenarios with varying degrees of holes by randomly dropping relevant documents from the relevance judgment in TREC DL tracks. Our experiments reveal a strong correlation between our LLM-based method and ground-truth relevance judgments. Based on our simulation experiments conducted on three TREC DL datasets, in the extreme scenario of retaining only 10% of judgments, our method achieves a Kendall tau correlation of 0.87 and 0.92 on an average for Vicu\~na-7B and GPT-3.5 Turbo respectively.

Click here to read this post out
ID: 843981; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 9, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: