×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.05081v1 Announce Type: cross
Abstract: Recent developments on deep learning established some theoretical properties of deep neural networks estimators. However, most of the existing works on this topic are restricted to bounded loss functions or (sub)-Gaussian or bounded input. This paper considers robust deep learning from weakly dependent observations, with unbounded loss function and unbounded input/output. It is only assumed that the output variable has a finite $r$ order moment, with $r >1$. Non asymptotic bounds for the expected excess risk of the deep neural network estimator are established under strong mixing, and $\psi$-weak dependence assumptions on the observations. We derive a relationship between these bounds and $r$, and when the data have moments of any order (that is $r=\infty$), the convergence rate is close to some well-known results. When the target predictor belongs to the class of H\"older smooth functions with sufficiently large smoothness index, the rate of the expected excess risk for exponentially strongly mixing data is close to or as same as those for obtained with i.i.d. samples. Application to robust nonparametric regression and robust nonparametric autoregression are considered. The simulation study for models with heavy-tailed errors shows that, robust estimators with absolute loss and Huber loss function outperform the least squares method.

Click here to read this post out
ID: 844891; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 9, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: